Multiclass Feature Selection With Kernel Gram-Matrix-Based Criteria
نویسندگان
چکیده
منابع مشابه
Ensemble-based Feature Selection Criteria
Recursive Feature Elimination (RFE) combined with feature ranking is an effective technique for eliminating irrelevant features when the feature dimension is large, but it is difficult to distinguish between relevant and redundant features. The usual method of determining when to stop eliminating features is based on either a validation set or cross-validation techniques. In this paper, we pres...
متن کاملKernel Selection in Support Vector Machines Using Gram-Matrix Properties
We describe an approach to kernel selection in Support Vector Machines (SVMs) driven by the Gram matrix. Our study extracts properties from this matrix (e.g., Fisher’s discriminant, Bregman’s divergence) using different kernel functions (linear, polynomial, Gaussian, Laplacian, Bessel and ANOVARBF), and incorporates such properties as meta-features within a meta-learning framework. The goal is ...
متن کاملFeature Selection with Adjustable Criteria
We present a study on a rough set based approach for feature selection. Instead of using significance or support, Parameterized Average Support Heuristic (PASH) considers the overall quality of the potential set of rules. It will produce a set of rules with balanced support distribution over all decision classes. Adjustable parameters of PASH can help users with different levels of approximatio...
متن کاملConfusion Matrix-based Feature Selection
This paper introduces a new technique for feature selection and illustrates it on a real data set. Namely, the proposed approach creates subsets of attributes based on two criteria: (1) individual attributes have high discrimination (classification) power; and (2) the attributes in the subset are complementary that is, they misclassify different classes. The method uses information from a confu...
متن کاملGenetic Algorithms and Kernel Matrix-based Criteria Combined Approach to Perform Feature and Model Selection for Support Vector Machines
Feature and model selection are in the center of attention of many researches because of their impact on classifiers’ performance. Both selections are usually performed separately but recent developments suggest using a combined GA-SVM approach to perform them simultaneously. This approach improves the performance of the classifier identifying the best subset of variables and the optimal parame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2012
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2012.2201748